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Goal

Evaluate if moving intermediate data (i.e. data between 
different processing steps) of an HEP workflow to a parallel 
file format (such as HDF5) could be beneficial for HEP data 
processing on HPC?
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Current status

Major Activities Status

Multithreaded Test framework development Complete

Serial output and input modules development 
and evaluation

Complete

MPI extension and Parallel HDF5 output 
modules development and evaluation

In progress

In the last all hands meeting in April, we discussed multithreaded 
test Framework, comparisons of different output modes, and 
shared initial design approach towards parallel design. 



HEP-CCERecap: Adding MPI support to the Root 
serialization test framework for Parallel HDF5 
design

• Created an MPI-based version of the testing framework 
• Goal is to be able to evaluate multi-node performance and 

developing parallel HDF5 output modules
• Current supported modes:

a. N MPI ranks able to read N input files and write N output files, 
trivial, running multiple processes of root serialization all through 
MPI (any input/output mode combination is supported)

b. N MPI ranks reading 1 input file and write N output files (any 
input/output mode combination should work logically)

c. N MPI ranks reading N files and writing 1 output file (only 
supported for HDF5) 
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Parallel HDF5 approach
• N number of MPI ranks participate in the reading of file(s) 

and write to a single HDF5 file collectively (i.e. parallel write 
across a single dataset).
• Writing a file collectively has the advantage that the final file 

might not need merging.
• The Event batch based serial HDF5 output module design 

seemed to be the best performing HDF5 design, hence we 
used that design as the basis of parallel HDF5 design. 

• Store events as blobs in a single HDF5 dataset, and aggregate 
events before writing

• The key feature in the parallel design is event distribution 
approach among MPI ranks and the use of MPI functions to 
exchange relevant information such as data sizes and 
offsets to coordinate for collective IO. 
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Approach 1: Number of events is known 
Each MPI rank knows the total number of events to process and the 
batch size (i.e. how many to aggregate).  

• Equally distribute events among MPI ranks
• If not equally divisible, or every rank does not have same number of 

batches, adjust number of events to do so
• Each rank then calculates the starting event and number of 

events it will be processing
• Each rank only reads the events it will write, except in the case where 

its not equally divisible, then it reads more but writes only that is 
requested

• Each rank reads the events and continue to accumulate until 
reaches batch size, then it is ready to write

• Using MPI_Scan and MPI_Reduce, exchange information with 
other ranks to determine the offset it will be writing to 

• Each rank extends the dataset accordingly and makes the 
H5Dwrite call 
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9 10 11 12 13 14 15 16

MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Read/Input

Write happens in 
batches of size 2

First parallel write

1 3 4 5 6 7 82

1 2 5 6 10 13 149
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MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Read/Input

3 4 7 8 11 12 15 16

Write happens in batches

First parallel 
write

Second parallel write

1 3 4 5 6 7 82 9 10 11 12 13 14 15 16

1 2 5 6 10 13 149
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Approach 2: Number of events is unknown 

• A realistic use case, where at the beginning of the 
processing, number of events is unknown; processing 
continues until end of file or no more events to process

• Each rank knows the number of events it can write at a time
• For every batch write, each rank reads in the number of 

events that is equal to the batch size across all ranks. 
• No adjustments needed in reading but we do read more 

data per batch write. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Each rank reads same 8 events

1 2 3 4 5 6 7 8

Write happens in 
batches of size 2

First parallel write
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MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Batch 1 read by all ranks

9 10 11 12 13 14 15 16

Write happens in 
batches of size 2

First 
parallel 
write

Second parallel write

Batch 2 read by all ranks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8
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Sample HDF5 output file
HDF5 "sample.h5" {
GROUP "/" {
   GROUP "Lumi" {
      ATTRIBUTE "BranchListIndexes" {
         DATATYPE  H5T_STRING {
            STRSIZE H5T_VARIABLE;
            STRPAD H5T_STR_NULLTERM;
            CSET H5T_CSET_UTF8;
            CTYPE H5T_C_S1;
         }
         DATASPACE  SCALAR
      }

 ……    
 
     ATTRIBUTE "run" {
         DATATYPE  H5T_STD_I32LE
         DATASPACE  SCALAR
      }
      ATTRIBUTE "uint_bunchSpacingProducer__RECO." {
         DATATYPE  H5T_STRING {
            STRSIZE H5T_VARIABLE;
            STRPAD H5T_STR_NULLTERM;
            CSET H5T_CSET_UTF8;
            CTYPE H5T_C_S1;
         }
         DATASPACE  SCALAR
      }
      DATASET "EventIDs" {
         DATATYPE  H5T_STD_I32LE
         DATASPACE  SIMPLE { ( 320000 ) / ( H5S_UNLIMITED ) }
      }
      DATASET "Offsets" {
         DATATYPE  H5T_STD_I32LE
         DATASPACE  SIMPLE { ( 35840000 ) / ( H5S_UNLIMITED ) }
      }
      DATASET "Products" {
         DATATYPE  H5T_STD_I8LE
         DATASPACE  SIMPLE { ( 23943467427 ) / ( H5S_UNLIMITED ) }
      }
   }
}
}

Three data sets; one for event IDs, one 
for storing offsets, and the last one for the 
products data itself  

Data product information stored as attributes

Run number, etc also stored as attributes



HEP-CCE
Performance studies on Cori

• Used the root serialization test framework in MPI mode; 
kept HDF5 chunk size, batch size constant

• Used Cori haswell nodes with burst buffers 
• Scaling tests done by increasing the number of nodes
• MPI ranks varied from 1- 4 per node
• The number of threads per node kept at 64
• Increased number of events with number of nodes. 

• Number of events 320K to 20 million
• Generated output file size ranges: 25GB - 1.6 TB
• Used CMS data file
• Burst buffer stripped up to 2 TB space requested (100 burst 

buffer nodes) 
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Total throughput (Events/sec)

• Total throughput calculated 
using event processing time and 
number of events

• Performance scaling with the 
number of nodes

• Using 4 ranks per node (16 
threads/rank) gave the best 
performance, ~51% 
improvement as compared with 
1 rank per node.

• ~97K events/sec is the 
maximum throughput observed 
for 256 ranks on 64 nodes. 

• This translates to 8GB/s 
bandwidth we were able to 
consume for the largest set. 
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IO time breakdown

• Time spent in MPI Scan calls to coordinate offsets in the 
datasets is ~9% of the total IO time

• Time spent in MPI Reduce calls for the final offset is ~5% of 
the total IO time

• Time spent in actual HDF5 write dataset calls is ~32%
• There are other calls that we did not time, for example 

creating/opening HDF5 file, writing file header that includes 
writing hundreds of attributes (115 for the data used in 
tests), inquire about current data space, extend/resize 
datasets, etc 
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Next steps and plan for FY23
• Complete performance evaluation studies on Cori 

• Understand IO behavior, untimed calls that are actually constituting 
50% of the IO time, use Darshan logs  

• Move evaluation studies to Perlmutter soon
• HDF5 options to work with 

• Asynchronous IO
• Multi dataset; we only have 3 datasets though 

• Write a paper/report 



HEP-CCE

Backup material
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Throughput for all three cases
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Future work

• Storing C++ objects (using ROOT’s reflection) directly to HDF5 without 
serialization

• Multi-threaded HDF5
• Any use of Subfiling for our work? 
• HDF5 streaming services 
• Explore direct storage access from GPUs 
• Others not directly HDF5

• RNtuple
• C++ object design studies


